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bstract

The changes of relative permeability and capillary pressure as a function of liquid water phase saturation, two key parameters in two-phase
EMFC models, are investigated using a capillary network model incorporating an invasion percolation algorithm with trapping. The two-
imensional capillary network accounts for capillary dominated drainage and cluster formation. It is shown that relative permeability is constant
or low saturation, but follows a power law of saturation for high saturations, with an exponent of about 2.4 that is independent of network size or
eterogeneity. An increase of the network size and reduction in heterogeneity tend to reduce the relative permeability, and relative permeabilities
f much less then unity are obtained even for saturations as large as 0.8. Capillary pressure on the other hand does not vary with saturation and
etwork size, but is influenced by heterogeneity only. This suggests that regardless of the interface shape and size, the capillaries at the interface

aintain a constant average radius causing the capillary pressure to remain constant. It is finally shown that with appropriate scaling and for a given

etwork heterogeneity, the normalized capillary pressure, single-phase permeability and relative permeability can be deduced for other choices of
orous medium physical scales without requiring a new set of simulations.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The transport and accumulation of liquid water is a pacing
tem in PEM fuel cells from the view point of design and oper-
tion, and gives rise to a variety of challenging multiphase flow
egimes, which are still not well characterized or understood. In
his paper we focus on the multiphase flow in the porous gas
iffusion layer of PEM fuel cells. Recent experimental attempts
o shed light on two-phase flow in PEM fuel cells have been

ade by Tüber et al. [1], Nam and Kaviany [2], Pekula et al. [3],
itster et al. [4], and Bazylak et al. [5] using visualization tech-
iques and neutron imaging, but there has been little progress in
uantifying the processes. A variety of modeling strategies have
een proposed (see review in Litster and Djilali [6]) to predict

hase saturation in the gas diffusion layers, including the multi-
uid model (Berning and Djilali [7]) and the mixture model
8,9]. A critical aspect of these models is the need to prescribe

∗ Corresponding author. Tel.: +1 250 721 6034; fax: +1 250 721 6323.
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he relative permeabilities (kr,i) of each phase and a constitutive
elation for capillary pressure (pc) as a function of saturation (s).
emarkably, multiphase fuel cell models to date have had to rely
n empirical correlations obtained from soil and sand samples.
as diffusion layers have, as shown in Fig. 1, a radically differ-

nt structure, and they are also treated to impart hydrophobicity
n order to promote water transport. The effective relative per-

eability and capillary pressure curves are expected to be quite
ifferent [6]. In this paper we propose to address this issue using
apillary pore network simulations.

There is a rich literature on multiphase flows in porous media
ue to their relevance in a large number of engineering appli-
ations ranging from oil recovery, chemical reactors and heat
xchangers, to drainage and drying of soils. Continuum mul-
iphase models are limited in their ability to predict surface
eat and mass transfer coefficients, distribution of phases (phase
aturation), and the formation of “dry patches” [10]. Discrete

ore network models provide an alternative approach to eluci-
ate transfer phenomena and to evaluate transfer parameters.
n network models, an actual porous medium is represented
s a network of pores that are connected by throats [11], and

mailto:ndjilali@uvic.ca
dx.doi.org/10.1016/j.jpowsour.2007.06.053
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Nomenclature

A system matrix
A, B, α, β, n power law parameters
b force vector
D tri-diagonal matrix
f fraction of throats invaded at the outlet boundary
g throat conductance (m3 Pa−1 s−1)
kr,i relative permeability
K permeability (m2)
Ksp single-phase permeability (m2)
l throat length (m)
L medium length (m)
nL network size
N number of random network realizations
p pressure (Pa)
�p/L pressure drop (Pa m−1)
pc capillary pressure (Pa)
q flow rate through one throat (m3 s−1)
Q flow rate (m3 s−1)
r radius (m)
R diagonal matrix
s phase saturation
V volume (m3)
Vp volume of pores (m3)
W medium width (m)
W × δ medium cross-section area (m2)

Greek letters
χ network heterogeneity, rmax/rmin − 1
δ medium depth (third dimension) (m)
φ porosity
μ dynamic viscosity (Pa s)
σ surface tension (Pa m)

Subscripts
av average
bt breakthrough point, f = 1/nL

H horizontal
inl inlet
I fluid phase
nex next
out outlet
p pore
pre previous
sp single-phase
t throat
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tp terminal point, f = 1
V vertical

uch models have been used to investigate a number of different
rocesses, including two-dimensional creeping flow [12], evap-

ration and drainage [13–17], diffusion and dispersion [18–20],
nd flow in fractures [21].

A number of parameters are required for initial network
efinition, which include coordination number, network het-

f
[
c
o

ig. 1. Scanning electron microscope of a GDL illustrating random fibre struc-
ure and PTFE webbing.

rogeneity, pore and throat shape. The coordination number
connectivity) is equal to the ratio of connected pores to the site
ore. For regular networks, the coordination number is equal to
our and six for 2D and 3D networks, and a value of around
our has been reported for 3D simulations of stochastic media
22]. In direct measurements of porous structures using micro-
omography, similar coordination numbers were found; although
oordination numbers up to fifteen have been reported [22,23].
nother parameter defining the network heterogeneity is the size
istribution of the pores and throats. Random distributions have
een used with different distribution laws: beta [24], uniform,
nd normal [25]. In addition, the shape and cross-sectional area
f the pores and throats can be different [26]. Finally, all these
arameters influence the distribution of the phases in the network
nd interfacial area [27].

The multiphase flow parameters (relative permeability, cap-
llary pressure) depend on the porous medium properties, and
onsequently, network topology [28]. The multiphase parame-
ers also depend on the type of process, and the predominance of
ravity, viscous or capillary forces [29]. For very slow processes
n which capillary forces dominate, the process follows invasion
ercolation [30], for which the problem formulation was pro-
osed by Wilkinson and Willemsen [31]. The definition of the
verall potential for any combination of these three forces and
ow the phases distribute within a porous medium is discussed
n Prat [32] for all other cases. The relative influence of the three
orces is characterized by the capillary and the Bond numbers
13], from which correlation length (average size of immobile
uid clusters) can be calculated [33]. The relative permeability

s constant when the correlation length is much smaller than the
omain size. Otherwise, when the domain is small compared to
he correlation length, the relative permeability follows a power
aw of domain size [34].

So far the only attempt to apply pore network models to

uel cell gas diffusion media is the work of Nam and Kaviany
2] who used this method to determine the effective diffusion
oefficient as a function of porosity and saturation. However, in
rder to compute the required water saturation profile, Nam and
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aviany relied on the prescription of a cubic variation of the
elative permeability (kr,i) with saturation in conjunction with
he Leverett function for the capillary pressure (pc). The main
bjective of this work is to use network simulations to establish
he functional dependence of the relative permeability (kr,i) and
apillary pressure (pc) on the saturation (s) of an invading phase
liquid water), particularly in the context of fuel cell gas diffusion
lectrodes. The determination of such constitutive relations is a
entral issue in the development of reliable models for PEM fuel
ells where two-phase flow conditions are commonly encoun-
ered [6,7]. In this work, the focus is on the influence of the
DL/porous medium domain properties, such as heterogeneity

nd layer thickness, on (kr,i) and (pc) in the limit of the capillary
ominated flow (slow flows).

. Capillary network model

The two main macroscopic properties used to define a porous
edium are porosity (φ) and permeability (Ksp), and these can

e interpreted as storage and momentum transfer properties,
espectively. Capillary network models exploit these in repre-
enting the medium as a network of pores and throats. The fluids
re stored in the pores, where there is no resistance to transfer
etween phases, whereas the transfer resistance is associated
ith the throats, defined as volumeless connections between the
ores. A schematic of such a two-dimensional network with each
ore connected to four throats is depicted in Fig. 2. In order to
nvestigate fluid flow through a specific porous medium using a
etwork model, the macroscopic parameters have to be adjusted
ppropriately. Hence, the capillary network is defined such that
he total volume of pores (Vp) is equal to the void volume of
he porous medium. Normalizing with the overall volume of the
orous medium (V), the porosity is obtained:

∑Vp,i
=
i

V
(1)

Similarly, the permeability of the network is set by adjusting
he throats appropriately. In single-phase flow through either a

ig. 2. Porous medium representation as a network consisting of pores and
hroats.
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orous medium or network, Darcy’s law applies. Given a pres-
ure drop ((pinl − pout)/L) across the network, and a flow rate (Q)
hrough a network boundary of area (W × δ), the single-phase
ermeability is defined as,

sp = μ
L

pinl − Pout

Q

Wδ
(2)

here (μ) is the fluid viscosity. Since the network is a het-
rogeneous medium, the single-phase permeability (Ksp) is an
ffective permeability that decreases as the medium becomes
ore heterogeneous [35,36]. Hence, the variation of the single-

hase permeability can be used as an additional constraint to
ound pore and throat distribution laws.

The other important issue is how storage and transport quanti-
ies (porosity and permeability) are altered due to the presence of

ultiphase flow. In multiphase systems, because transfer resis-
ances and potentials differ, the phase with the lower potential is
isplaced (replaced) by other phase(s) whose potential is higher.
hus, the void volume is occupied with two or more phases,
nd in order to quantify phase content, the phase saturation is
efined. When two or more phases are present, the transport of
ach phase is reduced compared to single-phase flow. Thus, the
hase permeability (Ki) needs to be calculated with respect to
ach phase. To do so, the laws for single-phase flow are assumed
o be valid in multiphase flow. For the momentum transfer cor-
esponding to each phase (i), the Darcy law relates the phase
elocity vector (ui) and the phase pressure gradient (�pi):

i = −Ki

μi

∇pi (3)

here (i = 1, . . ., np) and (np) is the number of phases. Using Eq.
3), the definition of a phase is preserved; this corresponds to a
art of the domain having different properties than the remaining
arts. Here, the viscosity (μi) of the fluid is distinct for each
hase. Furthermore, given the distribution of each phase, the
hase parameters for a multiphase system can be calculated.
he network models can readily be used for such calculations,
ince it is straightforward to obtain the saturation of each phase
n the overall medium.

In Eq. (3), the phase permeability (Ki) accounts for the
resence of both porous media and content of other phases (satu-
ation), whereas the single-phase permeability (Ksp) represents
he influence of the porous medium. In order to obtain a per-

eability that accounts for the influence of the saturation only,
he relative permeability (kr,i) is defined as a ratio of these two
ermeabilities:

r,i = Ki

Ksp
=

(
Qi

�pi/Li

) (
�p/L

Q

)
(4)

here (�pi/Li) is the pressure drop for an individual phase in
ultiphase flow, and is generally different from the single-phase

ressure drop (�p/L). Thus, Eq. (4) implies that the pressure
eld can change due to the presence of multiple phases thereby

ltering (kr,i).

Since two phases coexist, a condition at the interface(s)
etween the phases has to be included. In general, a pressure dif-
erence (pi − pj) arises between phases (i) and (j) at the interface,
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.e. the capillary pressure. As a criterion for phase displacement,
he pressure difference is compared to the threshold capillary
ressure (pc), which can be calculated from the Young–Laplace
quation:

c = 2σ

rt
(5)

here (σ) is the surface tension and (rt) is the radius of capillary.
or very slow processes (capillary dominated), a simpler dis-
lacement criterion can be used, i.e. the throat with the largest
adius at the interface will be invaded by invading fluid. The
nvaded fluid can be trapped in the network (clusters) if the
nvading fluid flow paths merge, form internal loops, or hit the
o-flow network side. Furthermore, the throat invasion is quasi-
tatic, meaning that each throat can be invaded at most once, and
herefore the invading phase pattern is a static configuration as
ell. This process is referred as invasion percolation with trap-
ing, as defined in Wilkinson and Willemsen [31], and processes
uch as slow drainage follow this pattern.

Usually, the invasion is stopped once the invading fluid
ppears at the outlet boundary, where only one outlet throat is
nvaded. This is the breakthrough point of the process. However,
he invasion can be stopped anytime between breakthrough and
hen all throats at the outlet are invaded (the terminal point). The

raction of invaded throats at the outlet (f) is therefore (f = 1/nL)
nd (f = 1) for breakthrough and the terminal points, respectively.
e distinguish two types of invading fluid flow paths: (i) the flow

aths that connect the network inlet and outlet, (ii) and the flow
aths that do not reach the network outlet, as they become part
f invaded fluid clusters. The invading fluid carrying backbone
omprises all connecting flow paths, and only this part of the
nvading phase contributes to the momentum transfer. The vari-
tion of the invading fluid flow paths pattern is caused by: (i)
nvasion stopping point, and (ii) network randomness. Using this
ramework, we investigate how multiphase parameters vary with
nvading phase saturation.

. Numerical procedure

We define a regular square capillary network of size (nL × nL)
ith randomly generated throat radii. The invading fluid enters

he network at one side (inlet) and the invaded fluid flows out
f the opposite side of the network (outlet). There is no flow
hrough the other two network sides. In a sequence of discrete
teps, the invading fluid occupies the throat with the lowest
otential (largest throat radius) at the interface. Thus, the inter-
ace moves and the flow paths of invading fluid expand. The
nvading fluid pattern for a particular network realization is not
ffected significantly by an invasion stopping point (between
reakthrough and terminal points), as the flow pattern is already
eveloped in the breakthrough point. However, the patterns of
ow paths and clusters can be very different for distinct ran-
om realizations that might cause large variations in multiphase

ow parameters. Two limiting cases are (i) a network with very

arge cluster size, for which flow paths are less branched, and
ii) the opposite case of a network with small clusters and
ighly branched flow paths. Fig. 3(a and b) illustrate these

r
f
t
t

ig. 3. Invasion of a capillary network for cases of (a) low saturation, and (b)
igh saturation of invading phase. The inlet and outlet are located at the top and
ottom of the network boundary, respectively.

wo limiting cases in which invading and invaded phases are
hown with thick black and gray lines, respectively. Here, the
uid enters the network at the top boundary, and the outlet
oundary is at the bottom of the network. Corresponding car-
ying backbones of the case depicted in Fig. 3(b) is shown in
ig. 4.

In order to calculate the single-phase (Ksp) and the invading
hase permeability (Ki) (see Eq. (2) for single-phase permeabil-
ty), the pressure solutions within the network (for Ksp) and the
arrying backbone (for Ki) are required. This is obtained from
he simultaneous solution of the material balance equations over
ll pores within the network/backbone. For each pore in the net-
ork/backbone and corresponding throats, the overall material
alance can be written in the form:
c

j=1

qj = 0, c = 4 (6)

here (c) is the coordination number; in single-phase flow this

epresents the number of throats belonging to each pore (equal to
our for regular square 2D network). In multiphase flow, because
he backbone is defined as a static configuration with no phase
ransport across an interface, the coordination number for the
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ig. 4. Carrying backbone formed for case of high saturation of invading phase.

ores at the interface is smaller than four since at least one throat
s occupied by the invaded fluid.

The material balance for one throat is given by the flow rate
qj) through the throat and is calculated from the throat conduc-
ance (gj) and the pressure difference (�p) between the starting
nd ending pores of the throat:

j = gj �p (7)

here the throat is treated as a capillary of radius (rt) and length
l) occupied by one phase of viscosity (μ). The conductance is
btained from Poiseuille’s law:

j = πr4
t

8μl
(8)

In Fig. 5, a pore (i, j) and four connecting throats (i − 1, j),
i + 1, j), (i, j − 1) and (i, j + 1) are depicted. Both horizontal (H)

nd vertical (V) throats can be previous (pre) or next (nex) to the
ore (i, j). Since the direction of the flow for each throat is not
nown a priori, all (qj) are defined as flow into (i, j) pore. Using
his convention and Eq. (6), the material balance and from there

Fig. 5. Network node with one pore and connecting throats.
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he pressure balance for pore (i, j) obeys:

H
prep−10 + gH

nexp+10 + gV
prep−01 + gV

nexp+01

−(gH
pre + gH

nex + gV
pre + gV

nex)p00 = 0 (9)

here the subscripts for pressure (p), flow rate (q) and conduc-
ance (g) are with reference to Fig. 5. An expression of a similar
orm to Eq. (9) can be obtained for a pore at the interface that
elongs to the carrying backbone, where the throats with invaded
uid are omitted as they do not contribute to the balance of the

nvading phase. Applying Eq. (9) to each pore yields a linear
ystem of algebraic equations for pressure (p):

p = b (10)

The vector (b) depends on the pressure boundary conditions,
nd is assembled using Eq. (9) with specified pressures at the
nlet and outlet of the network. Matrix (A) is a typical finite
ifference matrix and for a network of (nL × nL = n2

L) pores,
t has a block-matrix form:

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,1 D1,2 0 . . . 0 0 0

D2,1 R2,2 D2,3 . . . 0 0 0

0 D3,1 R3,3 . . . 0 0 0

...
...

...
...

...
...

...

0 0 0 . . . Rn−2,n−2 Dn−2,n−1 0

0 0 0 . . . Dn−1,n−2 Rn−1,n−1 Dn−1,n

0 0 0 . . . 0 Dn,n−1 Rn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

here matrices (R) and (D) are tri-diagonal and diagonal,
espectively, with conductance of throats incorporated from Eq.
9):

ii = tridiag(gH
pre,i, −gH

pre,i − gH
nex,i − gV

pre,i − gV
nex,i, g

H
nex,i)(12)

ij = diag(gV
pre,i (i < j), gV

nex,i (i > j)) (13)

Matrix (A) is a sparse matrix with a scarcity of approx-
mately 1/n2

L. Using sparse matrix solvers for a network of
L × nL = 100 × 100 (matrix (A) has 108 elements out of which
04 are non-zero), the inversion of (A) can be obtained in a few
econds (MatLab package). Eq. (11) can be readily extended to
D networks and networks with variable coordination number.

A typical pressure profile for the carrying backbones (Fig. 4)
f the invading fluid is depicted in Fig. 6. The pressure drop is
ot constant, and the influence of network edges (inlet and out-
et) is clearly illustrated. As the invading fluid meanders along
aths with less flow resistance, the pressure changes are different
n the middle part of the network than at the edges. Averaging
he pressure along a direction perpendicular to the flow, an aver-
ged pressure profile along the flow direction is calculated and
hown in Fig. 7 for four different invasion stopping points: break-
hrough (f = 1/nL), terminal (f = 1), and two points (f1) and (f2)

1/nL < f1 < f2 < 1), where (f) is a fraction of invaded throats at
he outlet. Fig. 7 also depicts the pressure drop in the middle
art of network that is caused by the presence of two-phases (cf.
q. (4) and how relative permeability is calculated). Clearly, the
ressure drop depends on the stopping point (f).
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Fig. 6. Calculated pressure profile in the carrying backbone.

. Results and discussion

The simulations are performed using a regular square network
f (nL × nL) pores with coordination number equal to four. Five
etwork sizes were used nL = {20, 40, 60, 80, 100}. A network
onsists of a total of 2nL(nL + 1) cylindrical throats of dimen-
ion (r, l), and each throat is occupied by one phase only (either
nvading or invaded fluid). The length of the throat was set to
l = 2 × 10−3 m). To account for the porous medium heterogene-
ty, the throat radius was initially set as a random variable, with an
verage radius rav = 4 × 10−4 m. The radii (r) are uniformly dis-
ributed in range (rmin, rmax) × 10−4m with (rmin, rmax) = {(3.5,
.5), (2, 6), (1, 7), (0.5, 7.5), (0.2, 7.8)} and a heterogeneity
arameter defined as (χ = rmax/rmin − 1); thus χ = {0.3, 2, 6, 14,
8}. For each particular combination (nL, χ), N = 100 network
ealizations with randomly generated (r) are obtained, and from

hese we calculate average parameters. Using the above val-
es of (rav, l), a single-phase permeability of order 10−9 m2 is
btained; whereas for a typical gas diffusion layer (Ksp) is in
he order of 10−12 m2. Scale analysis can be used to adjust the

ig. 7. Averaged (direction perpendicular to the fluid flow) pressure profiles
long the fluid flow direction for different fraction of invaded throats at the
utlet (f). The pressure drop in the multiphase region is also shown (dashed
ines).
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etwork parameters to achieve the required permeability. In a
etwork, the single-phase permeability is proportional to r4

av/l

nd for two networks having the same heterogeneity parameter
χ), the group Ksp × l/r4

av should be the same irrespective on
he values (rav, l). The same scaling applies for the phase perme-
bility (Ki), and therefore, the relative permeability should be a
unction of the heterogeneity parameter (χ) only, and should not
epend on (rav, l). The capillary pressure (pc) is also expected
o vary proportionally with the inverse of the throat radii at the
nterface (1/r), and the group (pc × rav) should thus produce
he same results regardless of the value (rav) as long as (χ)
s kept constant. In order to verify the validity of the scaling
rguments, the numerical simulations are repeated for the net-
ork nL = 60, but with rav = 4 × 10−5 m, a value close to those
bserved in GDLs, and l = 2 × 10−4 m and all five χ = {0.3, 2,
, 14, 38}. Using these values of (rav, l), yields (Ksp) values that
re three orders of magnitude lower (i.e. 10−12 m2), and (pc)
alues an order of magnitude higher. The relative permeability
hould stay unchanged, and this will be discussed in Section
.2.

The invasion percolation algorithm with trapping is used to
btain invading phase distribution into the invaded phase, where
he invasion is stopped in the range from the breakthrough (one
hroat at the outlet is invaded) to the terminal point (all throats at
he outlet are invaded). For a known phase distribution, the invad-
ng phase saturation (s), single-phase (Ksp), invading phase (Ki),
nvading phase relative permeability (kr,i = Ki/Ksp), and capillary
ressure (pc) are calculated. From the pressure solution (see
ig. 7), it can be observed that the pressure changes linearly in

he middle part of the network, where all parameters (s, Ksp,
i, kr,i, pc) are calculated. The saturation (s) is calculated based
n the number of pores occupied by invading phase and overall
umber of pores, whereas permeabilities are obtained from the
omputed pressure and the phase flow rate in the network (Eqs.
2) and (4)). Throughout the network, continuity is satisfied and
he flow rate is constant and equal to the flow rate at the inlet and
utlet of the network. Finally, the capillary pressure (pc) is found
y averaging the capillary condition (Eq. (5)) at the backbone
nterface.

For one network random realization, stopping the invasion
n the range from breakthrough (f = 1/nL) to the terminal point
f = 1), where we recall (f) is the fraction of the invaded throats at
he outlet, we obtain the invading phase saturation range s = (sbp,
tp). This range changes for distinct random realizations (N).
verall, there is an inherently large scatter in the saturations
btained from the various realizations (these correspond to the
ocal variations in the water content in the GDL). The scatter
s influenced by both stopping point f = (1/nL, 1) and random
ealization, and is dominated by the latter. Furthermore, the net-
ork size (nL) influences the saturation scatter. For each (nL),
e calculate the average saturation (sav) for (N = 100) and cor-

elate this value with (nL) for particular (f), or for all (f). The
og–log (sav–nL) plots are shown in Fig. 8, where (f) is given

s a parameter. Wilkinson and Willemsen [31] have shown that
sav–nL) follows a power law:

av = Asn
−α
L (14)
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As (χ) increases, a larger variation in (Ksp) can be observed, and
furthermore the average (Ksp) decreases as depicted in the inset
figure (Ksp ∼ χ). In Fig. 10, single-phase permeability is plotted
ig. 8. Dependence of the average saturation (averaged over �s = 1.0) on the
etwork size (nL) for different fractions of invaded throats at the outlet (f).

here the exponent (α) for invasion percolation with trap-
ing is (α = 0.18). In our case this corresponds to the stopping
n the breakthrough point (s = sbp, f = 1/nL), where we found
α = 0.183). As we proceed toward (s = stp, f = 1), (α) decreases
nd approaches (α = 0.10), which is close to the percolation
xponent (α = 0.12). For (s) averaged for all (f), we found
α = 0.101). Ultimately, we find that the distribution of (s) does
ot depend on the heterogeneity (χ), as spreading of the invading
uid is influenced by radius size difference rather than magni-

ude difference.

.1. Single-phase flow

For single-phase flow, the single-phase permeability (Ksp) is
omputed. Since the throat radius is a random variable with a par-
icular distribution (uniform in this study), the calculated (Ksp)
s an effective permeability for which it is assumed that Darcy’s
aw applies. The influence of both (nL) and (χ) on (Ksp) is investi-
ated. Providing that the network is stochastically homogeneous
sufficiently large), an average of (Ksp) should not depend on
nL) (see, e.g. [35,36]), as moments of the throats distribution
unction remain the same. The deviation of (Ksp) is expected to
ecrease as a function of (nL), as the number of throats increase
ith (nL). The results of calculations for (Ksp ∼ nL) are sum-
arized in Fig. 9, where the average (Ksp) and deviation are

hown with symbols and error bars, respectively. For (nL ≥ 40),
he average (Ksp) becomes essentially constant.

As the medium heterogeneity is quantified by the throat dis-
ribution moments, the effective permeability decreases as the
orous medium becomes more heterogeneous (see, e.g. [36]).
ccording to Katz and Thompson [37], (Ksp) is proportional to

he characteristic length. The characteristic length is defined with
espect to some threshold (capillary pressure) in which an infi-
ite cluster is formed, and this characteristic length decreases
s medium heterogeneity increases, and thus (Ksp) decreases

ith (χ). This implies that (Ksp) is the largest for homoge-
eous porous media (the corresponding network would consist
f throats of equal size). It should be noted here that the perme-
bility of a porous medium is generally at least a two-parameter

F
e
(

Fig. 9. Influence of network size (nL) on single-phase permeability.

unction; in the Kozeny equation the two parameters used are
edium porosity and hydraulic diameter. Katz and Thompson

37] showed that the permeability can also be expressed as a
unction of formation factor and a characteristic length with-
ut an explicit dependence on porosity. Similarly, pore network
imulations appear to yield single-phase permeabilities that are
ndependent of porosity, but it should be kept in mind that a
etwork is constructed such that its momentum transport resis-
ance is the same as that of the actual medium. In this work,
wo parameters are again used (rav, l) and these are adjusted
o achieve the same (Ksp) as the porous medium. However, for
istinct network realizations, there is a variation in (Ksp). The
ariation of (Ksp) for N = 100 random realizations is shown in
ig. 10 for five different (χ) and nL = 60. For a network that is
early homogeneous (χ ≈ 0.3), the variation in (Ksp) is minimal.
ig. 10. Variations of the single-phase permeability as a function of the het-
rogeneity parameter for (nL = 60). Inset figure shows (N = 100) realizations for
χ = 2) and (χ = 38). Calculations performed for rav = 4 × 10−4 and 4 × 10−5 m.
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or exhibit more complex dependence (line (d)). Hence, there is
a large spread of individual (kr,i ∼ s) curves due to the random
configurations.
B. Markicevic et al. / Journal of

n terms of the group Ksp × l/r4
av, with open and filled symbols

epresenting results for rav = 4 × 10−4 m and rav = 4 × 10−5 m,
espectively. The results demonstrate that scaling by l/r4

av does
ndeed collapse the (Ksp) results on a single curve as long as
he heterogeneity parameter is kept constant. The changes in the
verage value and variability of (Ksp) also influence the value and
ariability of the computed relative permeability (kr,i) examined
ext.

.2. Relative permeability

Like saturation (s), the relative permeability of the invading
hase (kr,i) depends on the network size (nL) and fraction of
hroats invaded at the outlet boundary (f), and there is some (kr,i)
catter caused by varying stopping points (from breakthrough
o terminal point) and random network configurations. In the
ontext of a gas diffusion layer, the stopping point is particularly
mportant due to the presence of the collector plate land area; it
s only once the liquid water reaches the outlet boundary under
he channel area that liquid water flow occurs. Regardless of the
et value of (f), the average of (kr,i) decreases with increasing
nL). Correlating averaged (kr,i) and (nL) for a particular (f) we
nd that the power law applies:

kr,i) = Akn
−β
L (15)

ith the exponent (β = 1.08) for breakthrough point (f = 1/nL)
nd (β = 0.914) for terminal point (f = 1). Finally, for all (f)
value of (β = 0.910) is found. These results are shown in

ig. 11(a). In Eq. (15), we choose (f) and then average the relative
ermeability of invading phase (kr,i) for all random (kr,i) irrespec-
ive of (s) (this provides a saturation window of �s = 1.0). From
here we deduce the exponent (β). In order to check whether (β)
epend on saturation (s), we correlate the average (kr,i) with (nL)
or a saturation window (�s < 1.0). Average (kr,i) versus satura-
ion (s) is plotted in Fig. 11(b), showing a power law dependence
f (kr,i ∼ nL) with an exponent (β) that decreases with (s) (in this
tudy from 1.05 to 0.719). For low (s), (β) is close to the value
btained for (�s = 1.0), whereas for high (s) there is a large
ecrease in (β).

Variations in: (i) network size (nL), (ii) stopping point
sbt ≤ s ≤ stp), and (iii) network configuration (random realiza-
ions) which correspond to: (i) gas diffusion layer thickness,
ii) shoulder/land width, and (iii) local variation in liquid water
roduced, respectively, all generate changes in (kr,i) and (s).
hese changes are used to investigate the dependence between

kr,i) and (s), with (kr,i) taken as a configurational permeabil-
ty. In any case (kr,i) is expected to increase with saturation,
nd for single-phase flow (s = 1) it takes the value (kr,i = 1).
ig. 12 shows how the relative permeability (kr,i) changes with
aturation (s) for a network size (nL = 100) and a heterogeneity
arameter (χ = rmax/rmin − 1 = 38). Each line (kr,i ∼ s) represents
ne random network realization (N = 100) for the saturation

ange (sbt ≤ s ≤ stp); for clarity only some of the (N = 100) real-
zations are shown. Due to the configuration, different cases arise
rom small to large changes of (s) that are accompanied by large
r small changes of (kr,i) (lines (a) and (b), respectively). Fur-

F
r

ig. 11. Dependence of the average relative permeability on the network size
nL): (a) curves averaged permeabilities over (�s = 1.0) for different fraction of
nvaded throats at the outlet (f); (b) averaged for saturation range (�s < 1.0).

hermore, both (s) and (kr,i) can change significantly (line (c))
ig. 12. Random realization tendencies of (kr,i ∼ s) curves for stopping points
ange between the breakthrough and the terminal point.
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Fig. 13. Averaged values of the relative permeability (kr,i) as a function of satu-
ration: (a) for network random realizations (N = 100) and (nL = 100) and (χ = 38)
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of curves in Fig. 14). The parameter (Bχ) increases with (χ), and
an approximately constant value for (n) of around 2.4 is found.
Here, both powers are equal (Eqs. (16a) and (16b)), regardless
of (nL) and (χ). However, the parameters (BL) and (Bχ) and (kr,i)
n breakthrough point (f = 1/nL), (b) curves (kr,i ∼ s) for breakthrough, terminal
oint and whole range (1/nL, 1), (c) family of (kr,i ∼ s) curves for different (nL).
ashed line (in part (c)) represents curve for power of (n = 2.4).

For (nL = 100) and (χ = 38) at breakthrough point (f = 1/nL),
he results for (kr,i) and N = 100 random realizations are depicted

ith circles in Fig. 13(a). Invading phase relative permeabil-

ty (kr,i) values averaged in saturation increments (here for ten
ncrements of �s) are depicted with squares, and the standard
eviation of (kr,i) is shown with error bars. For low (s), (kr,i)

F
e
C
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s constant and then increases for higher (s). The procedure
f averaging (kr,i) and (s) is repeated for: (i) terminal point
f = 1), and (ii) over all range f = (1/nL, 1). Thus, three distinct
urves (kr,i ∼ s) are obtained and shown in Fig. 13(b). All curves
ollapse on essentially the same dependence. Using averaged
urves (kr,i ∼ s) for all (f) (circles and double dotted line in
ig. 13(b)) we obtain a family of curves (kr,i ∼ s) for various
etwork sizes (nL) shown in Fig. 13(c). As suggested in the lit-
rature, there is a power law dependence (kr,i ∼ sn), with the
ower (n) varying from unity to some higher values, depending
n the capillary number and type of process [38]. For larger net-
ork sizes (nL), (kr,i � 1) even for high s ≈ 0.8 (see Fig. 13(c)).
ence, for the non-constant part of a (kr,i ∼ s) curve, we correlate

kr,i) as a power function of (s):

r,i = BLsn (16a)

or which (BL) is found to decrease with (nL), and (n) remains
onstant (n = 2.4).

On the other hand, by altering the porous medium heterogene-
ty (χ), there is an additional change of (kr,i) However, assuming
hat (kr,i) is still a power function of (s), a modified expression
s adopted:

r,i = Bχsn (16b)

ith (n) and (Bχ) taken to depend on the parameters (nL) and
χ). The results for constant (nL = 60) and five different (χ) are
resented in Fig. 14. The open symbols in Fig. 14 represent (kr,i)
esults for rav = 4 × 10−4 m, and filled symbols depict results
or rav = 4 × 10−5 m. The relative permeability shows essentially
he same dependence (kr,i ∼ s) regardless of (rav), consistent with
he fact that the scaling factor l/r4

av is the same for both (Ksp)
nd (Ki) cancels out in the relative permeability (kr,i = Ki/Ksp).
s for (nL), (kr,i) is constant for low (s) and then increases for
igher (s). The relative permeability increases with (χ) (family
ig. 14. Relative permeability as a function of saturation for different het-
rogeneity parameters. Power law fits (n = 2.4) are plotted with dashed lines.
alculations performed for rav = 4 × 10−4 and 4 × 10−5 m.
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Fig. 15. Variation of single-phase permeability (Ksp) and invading phase per-
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show averaged (pc) values and the deviation in saturation incre-
ments (�s). The capillary pressure remains essentially constant
except for very low (s). This is attributed to the external pres-
sures at the network inlet and outlet boundaries; these pressures
eability (Ki) for (nL = 60) with different (χ). Errors bars are shown for (Ksp)
nd (Ki). (Ki) changes more slowly and with larger variation (dash dot circles)
han (Ksp).

or low (s) (Fig. 13 and subpart (c, left sides)) vary with (nL) and
χ). This confirms that it is possible to alter (kr,i) not only with the
ype of process but also with the structure of the porous medium
nL, χ). However, as the power (n) remains constant, it appears
hat (n) is influenced by the capillary number (process rate) only
hen the correlation length is altered (here the capillary number

s very low and all changes occur in the capillary regime).
The most important distinction between the single-phase per-

eability (Ksp) and the relative permeability (kr,i) is that (kr,i)
ncreases as the heterogeneity parameter (χ) increases, i.e. the
pposite of the behavior of (Ksp).However, the question is how
oes the invading phase permeability (Ki) changes with (χ)?
his is addressed in Fig. 15, where (Ksp) and (Ki) are corre-

ated for (nL = 60) at five values of (χ). Based on the nature of
he interaction between the invading fluid and porous medium,
he external pressure drives the invading fluid into the available
hroats with the largest radius, where the capillary pressure is
mallest. Hence, as (χ) increases, (Ki) increases as throats with
nvading fluid become larger, whereas (Ksp) decreases as shown
n Fig. 10. The results (Ksp, Ki) show that (Ki) increases with (χ)

ore slowly than (Ksp) decreases, but exhibits larger variations
han (Ksp) (vertical error bars for (Ki) are larger than horizontal
nes for (Ksp)). The error bars reveal a major difference between
Ki) and (Ksp), where the variation of (Ki) is influenced with
onfiguration of the carrying backbone, thus resulting in a large
ariation of (Ki), even for small (χ).

.3. Capillary pressure

The capillary pressure is calculated at the same part of the cap-
llary network as the saturation and invading phase permeability.
t the invaded/invading fluid interface, the pressure difference

etween two neighboring pores, each belonging to two differ-
nt phases (gas and water), is equal to the capillary pressure,
c = pnon-wetting − pwetting. The capillary pressure (pc) is equal to
he threshold capillary pressure (pc = 2σ/rt) of the throat con-

F
(
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ecting these two pores. In the threshold capillary pressure,
he liquid solid contact angle (θ) is omitted as in the porous

edium it may differ from the liquid contact angle at the solid
urface. If the solid surface contact angle were used, the capillary
ressure results would shift by a factor cos(θ). The additional
ncertainty in the capillary pressure prediction arises from the
ature of the gas diffusion layer which can exhibit both wetting
nd non-wetting characteristics. The spreading of the wetting
hase has been shown to not follow the invasion percolation
echanism [33], and networks that account for micro-force bal-

nce throughout the spreading need to be utilized. The need for
he micro-force approach arises from the fact that with wetting
ores present, more than one pore is filled at the same time.
his violates the basic invasion percolation assumption, hence a

ully non-wetting medium is modeled in this study. At the inter-
ace, one pore belongs to the cluster of the invaded fluid, and the
ther is filled with the invading fluid. All such pairs of pores are
dentified, and an average capillary pressure is calculated yield-
ng the capillary pressure in the network. The changes of (pc)
s a function of both (nL) and (χ) are investigated. We observe
hat the capillary pressure behaves similarly to the single-phase
ermeability (Ksp) with respect to both parameters. For vary-
ng (nL), a constant average (pc) is observed and the deviation
ecreases as (nL) increases (see Fig. 9 for (Ksp)). Similarly, it
as fond that the stopping point (from breakthrough to terminal
oint that represents the land width) does not influence the cap-
llary pressure (pc). This constant (pc) is dependent on the type
f material used for fabricating the gas diffusion layer.

The variation of (pc) with the invading fluid saturation (s)
or (nL = 60) and two distinct values of the heterogeneity param-
ter (χ = 2 and 38) is shown in Fig. 16 (results for (χ = 2) are
iven in small inset figure), where pairs (s, pc) are shown with
ymbols. In the same figure, the square symbols with error bars
ig. 16. Discrete random realizations of the capillary pressure for (nL = 60) and
χ = 38). Inset figure shows the results for (χ = 2) and the same (nL).
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ig. 17. Variation of averaged capillary pressure (symbols) and standard devia-
ion (bars) as a function of heterogeneity parameter for (nL = 60) for two average
ore radii values.

re maintained constant such that the flow is dominated by capil-
ary forces, and changes of saturations are purely due to random
etwork configurations. As the external pressure difference is
ot changed in the present study, the interface shape changes as
result of random configurations, but the average throat size at

he interface remains the same for a set value of (χ), and there-
ore, the capillary pressure remains constant as a function of
aturation. As (χ) increases, the average throat size at the inter-
ace changes, this in turn leads to an increase in (pc) as shown
n Fig. 17. Two types of symbols (open and full) represent the
etwork results for two different networks (rav, l) investigated.
caling the results by (rav), the capillary pressure results pre-
ented in the form (pc × rav) are independent on value (rav). The
nding that (pc ∼ s) is constant should not be confused with
pc ∼ s) curves obtained by varying the external pressure differ-
nce [39,40], even though almost constant values of (pc) were
btained in the middle of the (pc ∼ s) curves. When the external
ressure difference is changed (e.g. increasing the current den-
ity), the capillary number and, consequently, the interface shape
re altered, inducing a variation of (pc) with (s). This dependence
an be expressed using a Leverett type function. Conversely, in
he present study the capillary number is small and constant,
hus yielding constant (pc).

. Conclusions

A discrete capillary network model that uses an algorithm
ccounting for invasion percolation with trapping was developed
nd used to investigate the multiphase flow in porous media.
umerical simulations were conducted to analyze the behavior
f two key parameters: relative permeability and capillary pres-
ure, and their dependence on network size (nL) and network
eterogeneity (χ). The relative permeability decreases as (nL)
ncreases, but in contrast with the single-phase permeability, it

s found to increase with increasing network heterogeneity (χ).
his stems from the fact that the throats with the largest radii are
referably invaded, resulting in higher flow rates of the invading
hase through the network. The relative permeability is found

[

[

r Sources 171 (2007) 706–717

o remain constant for low saturation, and to follow a power
aw for higher saturations. The power law exponent does not
epend on (nL), (χ) and stopping point (f) and approximately
qual to (n = 2.4). However, the constant (B) in the relative per-
eability power law depends on (nL) and (χ) suggesting that the

elative permeability needs to be corrected for the influence of
he land width (included in parameters (nL)). The simulations
lso suggest that for intermediate saturations (0.2–0.8) the cap-
llary pressure remains constant for varying (nL) and (f). This is
ttributed to the fact that for a given external pressure, the inter-
ace shape varies, but the average throat size at the interface
emains the same. Both the relative permeability and capillary
ressure depend on the heterogeneity (χ) which characterizes a
iven porous medium/GDL. Finally, the scaling parameters for
he relative permeability and the capillary pressure are deter-

ined and using these scales both (kr,i) and (pc) are shown to
educe to the same dependence irrespective of the network (rav,
), provided that the heterogeneity (χ) is kept constant. This
llows convenient extension of the results to recover parame-
ers for porous media having different physical scales without
equiring additional simulations.
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